Determinant preserving transformations on symmetric matrix spaces
نویسندگان
چکیده
Let Sn(F) be the vector space of n × n symmetric matrices over a field F (with certain restrictions on cardinality and characteristic). The transformations φ on the space which satisfy one of the following conditions: 1. det(A+ λB) = det(φ(A) + λφ(B)) for all A,B ∈ Sn(F) and λ ∈ F; 2. φ is surjective and det(A+ λB) = det(φ(A) + λφ(B)) for all A,B and two specific λ; 3. φ is additive and preserves determinant are characterized.
منابع مشابه
Ela Determinant Preserving Transformations on Symmetric Matrix Spaces∗
Let Sn(F) be the vector space of n × n symmetric matrices over a field F (with certain restrictions on cardinality and characteristic). The transformations φ on the space which satisfy one of the following conditions: 1. det(A+ λB) = det(φ(A) + λφ(B)) for all A,B ∈ Sn(F) and λ ∈ F; 2. φ is surjective and det(A+ λB) = det(φ(A) + λφ(B)) for all A,B and two specific λ; 3. φ is additive and preserv...
متن کاملSome Observations on Dirac Measure-Preserving Transformations and their Results
Dirac measure is an important measure in many related branches to mathematics. The current paper characterizes measure-preserving transformations between two Dirac measure spaces or a Dirac measure space and a probability measure space. Also, it studies isomorphic Dirac measure spaces, equivalence Dirac measure algebras, and conjugate of Dirac measure spaces. The equivalence classes of a Dirac ...
متن کاملA Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملGeneralized matrix functions, determinant and permanent
In this paper, using permutation matrices or symmetric matrices, necessary and sufficient conditions are given for a generalized matrix function to be the determinant or the permanent. We prove that a generalized matrix function is the determinant or the permanent if and only if it preserves the product of symmetric permutation matrices. Also we show that a generalized matrix function is the de...
متن کاملDarboux Transformations for Super - Symmetric KP Hierarchies
We construct Darboux transformations for the super-symmetric KP hierarchies of Manin–Radul and Jacobian types. We also consider the binary Darboux transformation for the hierarchies. The iterations of both type of Darboux transformations are briefly discussed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017